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The visual system evolved to provide fast and adequate, and 
not necessarily the best, estimates of physical properties. One 
way in which the visual analysis has been speeded up is by 
analyzing only part of the scene in detail, with our foveae. The 
trade-off is that we must move our eyes to areas of interest for 
detailed analysis. Deciding where to move requires a fast 
selection process, ideally based on a moment-to-moment 
representation of potentially “important” regions in the natural 
scene. We propose the visual system does so by determining 
areas that deviate in a statistical sense from the rest of the 
visual scene. This information constitutes a statistical salience 
map that will drive gaze and attentional shifts. 

The concept of the salience map is central in the study of 
attention and eye movements. A number of neurally plausible 
computational schemes have been proposed for the creation of 
salience maps, most notably Li’s [1] work on V1, on which 
our hypothesis is based, but see also [3,4]. The important new 
aspect that this study brings is that, unlike previous imaging 
and most behavioral studies, we will start from a theoretical 
understanding of the statistical characteristics of natural 
images [5,6]. Statistical analysis of natural scenes and 
measurement-theoretical assumptions can tell us what 
information can be retrieved from the visual environment, 
with initial experiments shown in [7]. 

In computer vision, the selection of salient regions in an image 
is a well studied topic, for a review see [8], being the first step 
in many computer vision algorithms. Combining the insights 
from eye tracking studies with theoretical models of salient 
regions detection, we aim to arrive at better prediction of 
regional image saliency. Natural image statistics provide a 
means to quantize saliency, by comparing the common visual 
structures of the world around us, in contrast to salient visual 
structures which stand out by their sparse occurrence in the 
visual field. Particularly, we consider the integrated Weibull 
distribution as a parameterized model, which provides a good 
fit to the statistics of natural images [5]. We show how distinct 
regimes of the integrated Weibull distribution leads to various 
local saliency mechanisms. With model selection techniques 
from information theory, we can determine the probability for 
every distinct regime, to explain the statistical properties of 
local image content. These lead to different mechanisms for 
saliency determination, see Figure 1 for an example. 

Measurement of saliency from natural 
image statistics 
The contrasts in a large range of natural scenes conform to a 
Weibull type of distribution [5]. The integrated Weibull 
distribution includes the class of symmetric exponential 
distributions. Its shape indicates different regimes of the 
distribution (see Figure 2), thereby roughly categorizing image 
content [9]. When the contrasts in the image constitute a 
power-law, this indicates a contrasting foreground object 
against a background. When more and more clutter occurs, the 
shape progresses from power-law through exponential to 
become Gaussian for high frequent textures. Images with a 
regular pattern can not be described well with the integrated 
Weibull distribution. Note that parameters can be estimated 
with Maximum Likelihood Estimation (MLE) technique. It is 
possible to distinguish tree types of images according to the 
behavior of integrated Weibull distribution, or conclude that 
integrated Weibull distribution does not describe data well. 
For the first case, we use Akaike's information criterion (AIC) 
for appropriate model selection [10]. AIC estimates expected 
Kullback-Leibler information, based on the log-likelihood 
function at its maximum point. Hence, we do not need to 
assume that the “true model” is in the set of candidates. 
Regarding the latter case, we use Anderson-Darling goodness 
of fit test at a 5% confidence level. The Anderson-Darling test 
is a generalization of the Kolmogorov-Smirnov test, which is 
more sensitive to deviations in the tails of the distribution. 
This is a relevant characteristic of the test, as in our case the 
tails capture the strong, hence important contrasts present in 
the scene. We applied the approach to 50 by 50 patches from a 
hundred natural images (1 megapixels) taken from the 
National Geographic website. Of the patches, 72% were 
Weibull distributed of which 22% power-law, 42% 
exponential, and 8% Gaussian, respectively. The remaining 
28% of the patches was rejected by the Anderson-Darling test, 
and constitutes a mixture of Weibulls [11], or regular patterns 
[6], experimentally evaluated in Figure 3. Each of these 
distributions indicates a different mechanism for regional 
saliency.

  

 
Figure 1. An example of the use of the Weibull distribution in the determination of salient regions. 
Middle image shows example fixation points, sparsely sampling the object (original left). On the right, the 
region which deviates from the common statistics in the scene is highlighted, as determined by testing 
goodness-of-fit over an extended region. 
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Figure 2. The integral form of the Weibull distribution fits the statistics of 
contrasts in natural images very well. The distribution is characterized by a width 
and an exponent parameter. Its shape is exponential, where the exponent parameter 
determines shape from power-law like (most left) for single contrasting objects 
against background; to double exponential (left) for more fragmented scenes; to 
Gaussian (right) for high frequent textures. If the scene contains a close to regular 
pattern, the integrated Weibull does not fit (most right). Hence, fitting a Weibull 
distribution measures various regimes of natural image statistics. 

 
Figure 3. Results from an eyetracker experiment testing saccade behaviour for non-Weibull versus 
Weibull textures. Levels indicate the probability of making a saccade towards a non-Weibull texture out of 
8 circular arranged textures. Red denotes results from 15 subjects for the CuRet dataset (9 non-Weibull, 
52 Weibull); Blue indicates data from 9 subjects for the Alot dataset (34 non-Weibull, 216 Weibull).  
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